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ABSTRACT

A simple, relatively inexpensive technique has been developed for using past forecast
errors to improve the future forecast skill The method uses the forecast model and its adjoint and
can be considered as a simplified 4-dimensional variational (4-D VAR) system. One or two-day

forecast errors are used to calculate a small perturbation (sensitivity perturbation) to the analyses

that minimizes the forecast error. As in Rabier et al (1994) the longer forecasts started from the
corrected initial conditions, although better than the original forecasts, are still significantly worse

than the shorter forecasts started from the latest analysis, even though they both had access to
information covering the same period. The reasons for the poorer performance of the forecast
sensitivity method, which, in principle, is similar to a 4-D VAR data assimilation approach, are:
a) the use of the model as a strong constraint in the correction of the initial conditions, which

becomes a poorer assumption the longer the period considered, especially when the linear tangent
model and adjoint include only minimal physics; b) the use of a single iteration in the forecast

sensitivity approach, since the correction to the initial conditions has clearly not converged after
one iteration; and c) the use of analyses rather than the observations in the definition of the cost
function.

As a much less expensive alternative to 4-D VAR, we use the adjusted initial conditions

from one or two days ago as a starting point for a second iteration of the regular NCEP analysis
and forecast cycle until the present time (t=O) analysis is reached. Forecast experiments indicate

that the new analyses result in improvements to mediumr-range forecast skill, and suggest that the

technique can be used in operations, since it increases the cost of the regular analysis cycle by a

maximum factor of about 4 to 8, depending on the length of the analysis cycle that is repeated.

The model used in these experiments is the NCEP's operational global spectral model

with 62 waves triangular truncation and 28 a- vertical levels. An adiabatic version of the adjoint
(Navon et al 1992) was modified to make it more consistent with the complete forecast model,
including only a few simple physical parameterizations (horizontal diffusion and vertical mixing
as in Buizza 1992). This adjoint model was used to compute the gradient of the forecast error

with respect to initial conditions.

KEYWORDS: Adjoint model, Data assimilation, Numerical Weather Prediction, Forecast

errors, Sensitivity
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1. INTRODUCTION

The accurate specification of initial conditions is vital for Numerical Weather Prediction

(NWP). Many poor forecasts can be traced to errors in the initial conditions. Recently,

considerable attention has been focused on the 3-dimensional (3-D) and 4-dimensional (4-D)

variational assimilation methods (Talagrand 1987; Derber and Parrish, 1991; Navon et al. 1992;
Courtier et al. 1993) to improve the initial conditions. While the 3-D techniques have become

feasible (Derber et al, 1991), the 4-D variational techniques remain expensive and still on the edge
of feasibility for operational implementation. In this paper we describe a simple, less expensive
alternative to the 4-D variational system that can result in improvements to the forecast and data

assimilation system.

It is well known that errors originating from uncertainties in the initial conditions grow

with forecast time. Lacarra and Talagrand (1988) and Vukicevic (1991) investigated the short

range evolution of small perturbations, and showed that the evolution of small errors in a

nonlinear model can be approximated with a linear tangent model for about two days. At the US
National Centers for Environmental Prediction (NCEP/NWS/NOAA, formerly National

Meteorological Center) there has been some experimentation to remove the short-term systematic
errors and initial growing errors. Thiebaux and Morone (1990) investigated the spatial and
temporal statistical coherencies in the departures of short-range-forecasts from observed and
analyzed geopotential field, and found that they can be used diagnostically as the basis for
adjustment of forecast products: estimate the "stray" of the forecast cycle using the most recent

history discrepancies between forecast and analysis, then remove the stray from current forecast.
Their experiments demonstrated that this statistical stray-corrected method had a significant

impact on forecast accuracy, indicating that it may be possible to use the systematic statistical

character of past forecast error to improve the current forecast. Kalnay and Toth (1994) used the
growing modes obtained in the NCEP "breeding cycle" to partially remove the growing errors in

the analysis cycle through adjustment the first guess (initial condition), and their results indicated

that the procedure has the potential of improving the first guess and subsequent forecasts. In this
study, we attempt to use directly short range forecast error to adjust the initial condition through

a 4-dimensional minimization process by the adjoint method, and the experiments will show how

we could use the adjusted initial condition to improve the future forecast skill.

In the last decade, adjoint models have been applied in four-dimensional data assimilation

(Le Dimet and Talagrand 1986; Derber,1987 and 1989,Thepaut and Courtier 1991, M. Zupanski,
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1993, D. Zupanski, 1993, D. Zupanski and Mesinger, 1995), in optimal parameter estimation

(Zou et al. 1992), in the determination of singular vectors (Buizza, 1993), as well as in forecast

sensitivity studies (Vukicevic, 1992, Rabier et al, 1994, M. Zupanski 1995). One of the main
advantages of adjoint model is that it combines the dynamics of the forecast model and observed

(or analyzed) information in one system, so that the gradient of cost-function with respect to all

initial parameters, (initial field and model input parameters) can be calculated with a single

integration. If the cost function is defined as the distance between a forecast and verifying fields,

then by adjusting the initial conditions, the difference between the adjusted solution and the
original solution will give an estimate of the distribution of the initial error which will explain a

part of causes of forecast error. This idea was developed and applied by Rabier et al. (1993,

1994) using the European Center for Medium-Range Weather Forecasts (ECMWF) model. They

calculated the perturbation to the two-day-old initial conditions that would minimize the two-day

forecast error over Northern Hemisphere, and compared the resulting forecast with the original

two-days old operational forecast. The result showed a very substantial improvement of several

poor forecasts, although in most cases the updated forecasts from two days earlier were not better

than those launched from the latest initial conditions. Zupanski (1995) found that the forecast

sensitivity improved when several iterations were performed.

In this paper, we present a simple extension of the ECMWF technique which uses the

known error from past forecasts to improve future forecasts. The initial conditions of forecasts

1 or 2 days old is altered based on their observed forecast error, as done by Rabier et al. (1993).

The altered fields are then used as a starting point for a second iteration of the regular NCEP

analysis cycle in order to improve future forecasts. The experiments are performed with the NCEP

model with a triangular truncation of 62 waves and 28 vertical levels. The mathematical

formulation is described in section 2. The adjoint model (section 3) contains the complete

dynamics of the model, but only a few simple physical parameterizations (horizontal diffusion and

vertical mixing), as in Buizza (1993). In section 4, we present forecast sensitivity experiments
similar to those performed at ECMWF (Rabier et al, 1994). The extension of the method to

improve future forecasts technique by performing a new assimilation cycle, and the corresponding

results are presented in section 5. Section 6 includes a summary and conclusions.
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2. MATHEMATICAL FORMULATION

At any forecast time t, for a forecast variable X, the perceived forecast error 6x is given by

difference between forecast (Xt) and analysis( Xt f)

Ax =Xt - Xt (2.1)

where Xt=M(X(to)), M is a forecast model, X(t0) is initial condition corresponding to Xt.

A measure of the error over the forecast period is defined as the objective function J,

based on a total energy norm, given by:

j=16 11=V AV - C OP =6Tafff 6 =w--' +VA-'DVAD+RV(ln )+ T T)dE( a)dn= XTW6X
o az 2

(2.2)

where, 6X= (C, D, T, II ) denote differences between the forecast and analyses for vorticity,

divergence, temperature and surface pressure respectively. Tr Pr is the reference temperature and

pressure (Rabier et al., 1994), Ra is the gas constant for dry air, C is specific heat at constant

pressure for dry air. E represents the integration domain. W is the matrix of weights defining the

norm. The weights are a function of Tr, Pr Ra, and Cp. TI is the vertical coordinate.

We would like to find an initial perturbation x(t0o) that minimizes forecast error as

measured by the objective function. To minimize the objective function, most algorithms require

the gradient of the objective function with respect to the initial conditions. Talagrand (1986)

showed that the gradient is given by:

N

Vt J= E L TW6x(t) (2.3)

where L is the linearization of the forecast model around the current solution and LT denotes the

adjoint of the operator L.

In the first iteration of most minimization algorithms, the correction to the initial conditions

is equal to the gradient times a reasonable step size p. From this we obtain the new initial

conditions:
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X(t) =X(to) )-pVx(tj (2.4).

In much of the following we take advantage of the fact that this single iteration of the

minimization algorithm explains a substantial portion of the forecast error. The considerable cost

of each iteration makes it impractical to perform the minimization with many iterations as

recommended by Zupanski (1995). Examples on the impact of the use of several iterations will

be shown in section 4.

3. MODIFICATIONS TO THE ADJOINT OF THE NCEP GLOBAL SPECTRAL MODEL

As can be seen in the above derivation, the adjoint model plays a vital role in the

calculation of the gradient of the cost-function with respect to the initial conditions. To ensure

that we obtain a reasonably accurate gradient, it is necessary for the adjoint model to be as

consistent as possible with the forecast modeL It is well known that the inclusion of all the model

physics into the linear tangent model and its adjoint is both difficult and computationally

expensive, although the results appear to improve with the inclusion of some physical

parameterizations (Zupanski and Mesinger, 1995; Zou et al. 1993). Because of these difficulties,

however, most applications so far have used simplified adjoint models. Errico et al. (1993)

performed experiments with an adiabatic adjoint model which was able to accurately estimate the

perturbation tendencies of a full physics model. Buizza (1993) found that by using a linear

tangent adiabatic model with surface drag, horizontal diffusion and a simple vertical diffusion,

he could derive linear perturbations that were reasonably close to the nonlinear evolution of a

perturbation, thus validating also the corresponding singular vectors. At NCEP, an adiabatic

adjoint for the global spectral model was developed by Navon et al. (1992), including a simple

surface drag scheme and horizontal diffusion. Experiments showed that this version of the adjoint

worked well for most of the atmosphere within short periods, but unrealistically large growth rates

were observed at low levels of the model (Szunyogh, personal communication, 1994), a problem

attributed to inadequacies in the model physics. Following Buizza (1993) and Thone (1986), we

introduced, in addition to the surface drag and the horizontal diffusion, a linear vertical diffusion

scheme. To assess the effect of the vertical diffusion parameteriztion on the spurious growth, the

nonlinear NCEP global spectral model was integrated for 24 hours from 0000UTC 16 May 1985

initial conditions, but using different subsets of physical parameterizations. The results were
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compared with those obtained running the operational model with full physics. Fig. 1 shows the

kinetic energy norm of the different 24-hour forecasts at all model levels. In the run with no

physics it is apparent that there is an unrealistically large increase of kinetic energy at low levels

when compared with the run with full physics. The introduction of surface drag only improves

the lowest model level, but the kinetic energy in levels 2-7 remains too large. The introduction

of the new vertical diffusion and horizontal diffusion results in a solution much closer to the

operational T62 model with full physics.

To further examine the approximation to the complete vertical diffusion parameterization,

a small amplitude initial perturbation field 6x0 was introduced into the nonlinear model

integration with the full physics package, and the difference between the two nonlinear

integrations (staring from perturbed and unperturbed initial condition at OOOOUTC 16 May 1985)

was compared with a linear model integration which included the new linear vertical diffusion

and the same perturbation (6xo) as initial condition. Fig. 2 shows the comparison between the

linear and nonlinear evolution for the temperature perturbation field at sigma level 13 (about

500mb) after 24 hours of integration. The agreement between the perturbation fields obtained

from the linear and the nonlinear integration is generally good, containing small differences in

phase but reproducing all the main features. This suggests that, in agreement with previous

investigators, the dry adiabatic linear model with surface friction and vertical diffusion can

reproduce fairly well the nonlinear perturbations of the model with full physics for short range

forecasts. This new vertical diffusion scheme was included in the linear and adjoint models used
in this paper.
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4. SENSITIVITY OF SHORT RANGE FORECAST ERRORS TO PERTURBATIONS IN

THE INITIAL CONDITIONS

(a) Experiments

In this section, sensitivity experiments similar to those performed at ECMWF (Rabier et

al., 1994) are performed using the NCEP adjoint system. Again, 0000UTC 16 May 1985,

available from the NCEP/NCAR Reanalysis Project, was arbitrarily chosen as the initial

condition. The current NCEP operational data assimilation system (as of January 1995) was used

to create the analysis on a 6-hour cycle. This system uses a 3-dimensional variational analysis

scheme developed by Derber and Parrish in 1991 and which has undergone further improvements.

In order to test the sensitivity of the one or two-day forecast error to changes in the initial

conditions, three sensitivity experiments are performed and compared. In Experiment 1 we use

a one-day forecast error, where the forecast error is defined as the difference between the forecast

and the analysis at 0000UTC 17 May 1985; in Experiment 2 we use a two-day forecast error,

similarly defined at 0000UTC 18 May 1985; and in Experiment 3, we also use a two-day

forecast, but the forecast error in the cost function is defined as the sum of all the forecast

differences with the analyses available every six hours within the period 0000UTC 16 May 1985

through 0000UTC 18 May 1985. A conjugate gradient method (Gill 1989) was employed in our

system, with an optimal step size defined as in Derber (1987).

Fig. 3 illustrates the vertical distribution of the total energy norm of the forecast error

before and after a single iteration in Experiments 1 and 2, showing that the error decreases

significantly at every sigma layer. The effect of performing multiple iterations is shown in Fig.

4 for Experiment 3. As in Zupanski (1995) we find that although the first iteration reduces

substantially the cost function (by 18%o), additional iterations continue to decrease it, with a total

reduction of about 45% after 10 iterations (Fig. 4a). Similarly, Fig. 4b shows that the forecast

error throughout the two-day forecasts after one iteration is reduced by about 20%, and after

another 9 iterations by additional 25%. Note that in the extended period forecast error, we found

that not only the 48-h forecast is improved, but the 3-5 day forecasts are also significantly better.

There is a clear advantage of having more iterations, although one iteration is enough to improve

the control forecast. Zupanski (1995), using a regional model and its adjoint, found that the

sensitivity fields obtained after one and ten iterations were not very similar, with projections

corresponding to angles of up to 50° between them. But we should also notice that the descent
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of the cost-function in the first iteration is faster than for the other iterations.

Since the first iteration explains more forecast error than any of the following ones, and

because of the large expense of performing many iterations of the descent algorithm, ECMWF

has chosen to perform a single iteration in their experiments (Rabier et al, 1994), with a value

of the step size p= 1/100, 1/150 or 1/200 (depending on the season) multiplied by the gradient,

to generate the sensitivity perturbations. In this study, our main purpose is to use the improved

initial conditions as the starting point for a second iteration of the regular NCEP analysis cycle

(Section 5). We are interested in the potential operational application of this method, which limits

the available computer resources, so that we have also chosen to perform only a single iteration

assuming that such single iteration will result in a substantial reduction of the forecast error while

remaining computationally efficient. Since the fixed step size used by Rabier et al. (1994) may

not be sufficiently accurate, we determine the step size using the technique described in Derber

(1987), with 1/100 or 1/200 as the guess step size pg. The optimal step size p is given by:

N

E M[(Xi-Xref)]TXg(t)
P Pg , (4.1)

NET
S[K (tj)] X( Dj

i=1

where X'g(t) is the difference between the forecasts results from integrating the initial condition

X(to) and X(to)+pgVX(toJ. To calculate the optimal step size for one iteration, the forecast model

needs to be integrated one time from the initial condition X(to)+pgVx(to)J.

(b) Impact of the sensitivity perturbations on medium range forecasts

In this subsection we compare the impacts on medium range forecasts of the three forecast

sensitivity experiments discussed in the previous subsection, using a single iteration. We also

compare a control forecast performed from an unperturbed analysis for OOOOUTC 16 May 1985.

Fig. Sa shows the comparison of the total error energy norm of the three sensitivity forecasts

with the control forecast. Figs. Sb, c, and d illustrate the global RMS forecast errors for
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temperature, divergence and vorticity respectively. The results indicate that the one-day

sensitivity perturbation (experiment 1) improves not only the first day, but that the benefit extends

to days 2 through 4. The two-day sensitivity experiment (experiment 2) improvement extends

throughout the whole forecast period (days 3 through 7). Comparing experiment 2 with

experiment 3, in which the forecast error was defined throughout the two-day forecast and not just

at the end of the two days, we observe that experiment 3 is clearly better during the first 4 days,

but that at days 5 and 7 experiments 2 and 3 give similar errors. Note that experiment 3 results

in considerable larger changes in the initial conditions than the other two experiments.

Experiments indicated that the length of the period and the density of data insertion in the period

affected the initial perturbation and subsequent forecasts. This effect will be further tested with

the several possible operational configurations in subsection 5(b).

The results of these experiments agree with the ECMWF experience that the benefit of the

perturbed initial conditions extends beyond the period for which the forecast sensitivity

perturbation was initially calculated.

(c) Evolution of the sensitivity perturbation

A second experiment on forecast sensitivity on short and medium range forecasts was

performed with initial conditions corresponding to OOOOUTC 23 February 1995. The sensitivity

was calculated from 2-day forecast errors at OOOOUTC 25 February 1995, as in Experiment 2.

Fig.6 shows the 500mb geopotential height difference between the sensitivity and the control

forecast at 0, 24, 48, 72, 96, and 120 hours. We can see that the small initial differences (plotted

with a 3-meter contour interval) lead to very large differences after 120 hours (plotted with a 25m

contour interval). These large differences take place in both the Northern and the Southern

Hemispheres. Table 1 presents the anomaly correlation scores verified against operational

analyses for the control and the sensitivity forecasts, showing large improvements in both

hemispheres. An inspection of the distribution of the initial perturbation of geopotential height

at 500mb (corresponding to T+00 in Fig. 6) indicates that there may be two dominant error

sources in the Northern Hemisphere, over Canada and the North Pacific areas. The five-day

forecast differences are also maximum over North America in this case. A check of the

corresponding 5-day forecast of the NCEP operational model (at T126/28 level resolution)

indicates that the anomaly correlation scores on OOOOUTC 28 February 1995 were also unusually

low over North America, and within normal range for other areas of the Northern Hemisphere (P.

Caplan, pers. comm. 1995). This confirms that the large error growth of the sensitivity
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perturbation is present even in the high resolution model, and that the adjoint method is a useful

tool to trace back growing initial perturbations associated with the forecast error.

5. USE OF PAST FORECAST ERRORS TO IMPROVE FUTURE FORECAST SKILL

(a) Comparison of the sensitivity forecasts with regular forecasts from latest initial
conditions

So far, our results confirm the experience of Rabier et al. (1994), showing that the use of

the short range forecast errors can improve substantially the original forecast, even beyond the
period for which the error was computed. But the crucial question for an operational center like

NCEP is whether we can use this procedure to improve the skill of future forecasts. In other

words, if we use the observed two-day forecast error to improve the initial conditions from two

days ago, will the improved 5-day forecast from two days ago be also better than the 3-day

forecast from today? Unfortunately, as will be seen, the answer to this question is that, in most

cases, this is not the case. This lack of improvement with respect to the latest forecast was also

observed by Rabier et al. (1994). Therefore, taking advantage of our knowledge of the data

available until the present time just to correct older initial conditions is not enough to make

forecasts better than the regular forecasts made from the analysis cycle using all the data available

until today. There may be at least three reasons for this result: a) the use of the model as a strong

constraint within the forecast sensitivity procedure; b) the use of a single iteration to obtain the

improved initial conditions; and c) the fact that the latest analysis uses the observations directly.

However, it seems natural that if we can improve the initial conditions from two days ago,

it should be possible to perform a second iteration of the regular analysis cycle, starting from the

improved initial conditions from two days ago, and that this iterated analysis could then lead to

better forecasts from today.

We tested first this idea for 7 consecutive cases from 16 to 22 March 1995. At 00Z every

day, we calculated the sensitivity perturbation from the two days forecast error, then compared

the sensitivity 5-day forecasts with the original 5-day control forecasts. Fig. 7 shows the

comparison of the 5-day forecast anomaly correlations scores verified against control analyses

for 500mb geopotential height. Not surprisingly, the 5-day sensitivity forecasts (which take

advantage of the information available for two additional days in the computation of the two-day
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forecast error) are in most cases substantially better than the original 5-day forecasts, in both

hemispheres. However, the 3-day forecasts from the regular analysis cycle, also taking advantage

of the data gathered over the last two days, shows an even larger improvement (Fig. 7). A similar

conclusion was reached using one-day sensitivity forecasts: we found that the 5-day sensitivity

forecasts were much better than the 5-day control forecasts, but they did not exceed the skill of

the corresponding 4-day forecasts (figure not shown).

As indicated above, we tried to solve the lack of improvement upon future forecasts by

a simple extension of the Rabier et al.(1994) method, in which the sensitivity perturbation of short

range forecasts is used as a starting point for a second iteration in the analysis and forecast cycle

for the last two days. We called this an iterated analysis-forecast cycle.

(b) An iterated analysis-forecast cycle using the sensitivity perturbation

The initial conditions for the operational medium range global spectral model are provided

by the NCEP spectral statistical interpolation (SSI) scheme, a 3-D variational analysis (Derber

et. al., 1991). In the NCEP 6-hour analysis/forecast cycle, the 6-hour forecast from the global

spectral model is used as a first guess for the SSI, which finds the 3-D analysis fields that best fit

both the first guess and all the observational data gathered for the next 6-hour period.

In the iterated analysis cycle, we introduce the 2-day sensitivity perturbation into the 2-day-old

analysis. We then repeat the analysis cycle for the last two days using the improved initial

analysis until we reach the end of the sensitivity period. The verifications are made against the

control analysis. Fig. 7 also shows the anomaly correlation of the 3-day forecast that starts from

the new analysis, indicating that, for most cases, the new 3-day forecast is better than the original

forecast. Fig. 8 shows the 5-day forecasts from the regular and iterated analysis cycle using the

two-day sensitivity perturbation. It is encouraging that, in five out of the seven cases, and in both

hemispheres, the new 5-day forecast is equal or better than the regular (operational) forecast.

The conclusion of this experiment is that the iterated cycle has the potential of improving

the forecast skill, because it improves the corresponding 3 to 5-day operational forecasts that used

the same available information. Similar results were obtained using a one-day sensitivity

perturbation, and using it as starting point for a repeated one-day analysis cycle (not shown).

(c) Test of several possible operational configurations of the iterated analysis cycle
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In this final test, we chose a period from March 18 to April 1, 1995. All tests were done

in a configuration that could be implemented operationally, and the same procedure was applied

every day. The iterated cycle was performed in a continuous fashion as follows: a) We use the

0000 UTC analysis to compute the sensitivity perturbation for the one or two-days previous

analysis; b) We use the modified analysis to repeat the SSI analysis cycle until new current initial

conditions are obtained; c) Medium range forecasts are performed and compared with the

forecasts from the original (not iterated) analysis cycle.d) This analysis is then used to calculate

the next perturbation and start the next analysis cycle.

Four possible configurations were tested: 1) A 24-hour forecast error was used in the one-

day iterated assimilation period; 2) A 48-hour forecast error was used in the two-day iterated

assimilation period; 3) As in 2), but 24, 36, and 48-hour forecast errors were used to determine

the sensitivity perturbation; and 4) As in 2), but 36 and 48-hour forecast errors were used to

determine the sensitivity perturbation. The individual forecast results corresponding to tests 1 and

2 are presented in Fig. 9, and those of tests 3 and 4 in Fig. 10. The average scores verified against

the control analysis over the 15-days of experimental forecasts are presented in Table 2.

The iteration of the analysis cycle results in a small overall improvement with respect to the

operational control, for both Northern and Southern Hemispheres, even though it is not successful
in every case. Overall, the use of the two-day sensitivity results in more improvements than the

use of a one-day sensitivity. This is not surprising, since the errors are better defined after two

days for two reasons: a) The 2-day forecast errors are larger, and therefore, the perceived

"forecast errors" are less affected by the unknown analysis errors; and b) The growing errors are

better organized after two days than after one day.

With respect to the use of just the 48-hour forecast errors or adding the 24 and 36 hour

errors in determining the sensitivity patterns, the results seem to favor slightly the use of only the

36 and 48 hour forecast errors in the Northern Hemisphere. This would be in agreement with the

two arguments presented above: by including the 36-hour forecast errors (at a time in which the

growing errors are already organized), we increase the signal-to-noise ratios of the cost function.

In the Southern Hemisphere, which is less well observed, and where the uncertainties in the

analysis are larger, the results suggest that it may be better to only include the 48 hour forecast

errors. However, given that the difference between the one and the two-day iterated assimilation

impact is not large, it may still be desirable to perform this procedure operationally with a one-day

sensitivity approach.
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Fig. 11 shows the impact of the iterated cycle for a typical 500mb geopotential height 5-day

forecast (OOOOUTC 29 March 1995) over the US area. The 5-day control forecast misses a low-

pressure cyclone over Utah, but 5-day new forecast predicted this system much better, even

though it is still slightly too far to the south and east.

6. SUMMARY AND CONCLUSIONS

In this study, we presented a simple, relatively inexpensive technique for using past

forecast errors to improve the future forecast skill. The method is an extension of the forecast

sensitivity studies of Rabier et al (1994), and can be considered as a very simplified approach to

4-dimensional variational data assimilation. The sensitivity patterns are obtained by minimizing

a cost-function defined by the one or two-day forecast error norm. Since we are interested in a

cost-effective approach, we assume that the first iteration of the minimization algorithm will be

enough to achieve a substantial reduction of the forecast error, but not necessarily a true indication

of the analysis errors. We then use the perturbed one and two-day-old analysis as an improved

starting point for a repetition of the regular analysis cycle until the current initial conditions are

reached. Forecasts from these iterated analyses are in general better than the original forecasts.

We first tested the NCEP adjoint system by first performing experiments similar to those

of Rabier et al (1994). We found that it was necessary to introduce a simplified vertical diffusion

scheme into the linear and adjoint NCEP adiabatic models developed by Navon et al (1992), as

done by Buizza (1993), in order to avoid spurious increases of energy in the lower layers of the

model.

The sensitivity results obtained with this system are similar to those of Rabier et al (1994):
The 5-day forecasts from the 2-day-old analyses perturbed by the forecast sensitivity pattern

(obtained from the 2-day forecast errors) were substantially better than the original 5-day

forecasts. However, this important result, which proves that the use of the adjoint model is a

powerful tool to estimate errors in the initial conditions, does not by itself lead to improved

operational forecasts: When we compared the improved 5-day forecasts from 2-days old initial

conditions with the 3-day forecasts from the latest available analyses, the latter were still

considerably better, also in agreement with Rabier et al (1994).
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Since the forecast sensitivity method is, in principle, similar to a 4-D variational data

assimilation approach, it is important to consider the question why the 5-day forecasts with initial

conditions corrected using the perceived 2-day errors are so much worse than the 3-day forecasts

from the latest analysis, since both have access to information covering the same period. There

are several possible reasons for this: One is the use of the model as a strong constraint in the

correction of the initial conditions, which becomes a poorer assumption the longer the period

considered, especially with a linear tangent model including minimal physics. A second reason

is the use of a single iteration in the forecast sensitivity approach, since the correction to the initial

conditions has clearly not converged after one iteration. A third reason is the use of analyses

rather than the observations in the definition of the cost function. By contrast, in the NCEP

regional 4-D VAR approach, which includes an estimation of the background errors, most of the

model physics in the linear tangent and the adjoint models, direct assimilation of the data, and

about ten iterations, the forecasts are almost without exception better than the forecasts from the

control Optimal Interpolation analysis (Zupanski and Zupanski, 1995). Thus the 4-D VAR

approach is attractive but computationally rather expensive.

As a less expensive alternative to the full 4-D VAR approach, we used the improved initial

conditions from the sensitivity pattern to restart an analysis cycle for the last two days. In this

case, in contrast to the sensitivity approach, most of the forecasts from the iterated analyses were
equally or more skillful than the original forecasts. We found that the use of 2-day sensitivity

perturbations produced overall slightly better results than the use of one-day sensitivity patterns.

This is probably due to the fact that the one or two-day "forecast errors," obtained as the

difference between the forecast and the analysis, are only perceived errors, and are affected by
unknown errors in the analysis used for verification. Therefore, the signal-to-noise ratio of the

perceived forecast errors is better after two days, simply because the forecast errors are larger.

Moreover, the growing errors that we are trying to reduce from the initial conditions become

better organized and dominant over two days than over one day. We also found that, at least over

the Northern Hemisphere, the use of the 36-hour forecast errors in addition to the 48 hour errors

within the cost function led to somewhat better results, presumably because it also improved the

signal-to-noise ratio. In the Southern Hemisphere, where the analysis uncertainties are larger, the

use of only 48-hour errors in the cost function was slightly better.

In our system we have included an error norm defined globally. It is possible that defining

the error norm only over the Northern Hemisphere extratropics, as in Rabier et al (1994) would

lead to even larger improvements for this area (but to no improvements in the Southern
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Hemisphere operational forecasts).

The new scheme requires only one iteration of the minimization algorithm per day, as well

as an iteration of the analysis cycle for one or two days. Depending on whether one or two-day

errors are considered in this procedure, this increases the cost of the analysis cycle by a factor of
about 4 to 8, (compared to a much larger increase with full 4-D variational systems) and therefore

becomes computationally feasible with present day systems. It is possible that additional reduction
in the cost of this system (and the 4-D variational system) can be made by including additional

approximations (e.g., lower resolution, etc.). We plan to further test this system for possible

operational implementation at NCEP.
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Figure Captions

Fig.1 Vertical cross section of kinetic energy norms after 24 hours integration of the T62 global

spectral model with no physics, with surface drag, with surface drag and simple vertical

diffusion, and with the full physics (operational model).

Fig.2 The linear (2a) and nonlinear (2b)evolution of a perturbation 6X0 after 24 hours. Dashed

lines represent negative values.

Fig.3 Vertical cross section of the total energy norm of forecast error before (solid curve) and

after (dashed curve) one iteration.

Fig.4a Variation of the normalized cost-function (sum of total error norms) with the number of

iterations.

Fig.4b The total energy norms at every 24 hours in two days and extended forecast period. Solid

curve for the error norm of first guesses (control forecast) and long dash line for an error

norm after 1 iteration and short-dash line for after 10 iteration.

Fig.5a The forecast error measured by total energy norm.

Fig.5b The root mean square forecast error of the temperature

Fig.5c The root mean square forecast error of the divergence

Fig.5d The root mean square forecast error of the vorticity

Fig.6 Height difference between the sensitivity and the control forecasting for steps 0-120 hours

from 0000UTC 23 February 1995.

Fig.7 The anomaly correlation scores for 500mb geopotential heights, for 5-day sensitivity

forecast, corresponding 3-day control (operational) forecast, 5-day control forecast and

for the 3-day forecast from the new cycle (iterated). Dates (March of 1995) on the

horizontal axis denote the starting dates of forecasts.

Fig.8 Same as Fig.7, except 5-day control (operational) forecast and 5-day forecast from the new

cycle (iterated).

Fig.9 Comparison of 5-day forecast anomaly correlations scores verified against control

analyses for 500mb geopotential height. from control forecast, test 1 and test 2. Dates

(March of 1995) on the horizontal axis denote the starting dates of forecasts.

Fig.10 Same as Fig.9, except test 3 and test 4.

Fig.ll 5-day control forecast (a), 5-day forecast in iterated cycle(b) and analysis (c) of 500mb

geopotential height field over the US area at OOOOUTC 29 March 1995.
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Table Captions

Table.1 The anomaly correlation scores of 1-5-day forecast from OOOOUTC 23 February

1995 for 500mb geopotential height

Table.2 Comparison of the average anomaly correlation scores of 1-5-day forecast for

500mb geopotential height. Starting dates of the forecasts ranged from 18 March

1995 to 1 April 1995
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Table.1 Anomaly correlation scores of 1-5-day forecast from OOOOUTC
23 February 1995 for 500mb Geopotential Height

Hemisphere Type day-1 day-2 day-3 day-4 day-5

Northern H. Control 0.986 0.963 0.921 0.852 0.729
Sensitivity 0.989 0.978 0.969 0.934 0.877

Southern H. Control 0.933 0.820 0.762 0.670 0.592
Sensitivity 0.943 0.833 0.767 0.725 0.666

…-- - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - -



Table.2 Comparison of the average anomaly correlation scores of 1-5-day

forecast for 500mb geopotential height. Starting dates of the

forecasts ranged from 18 March 1995 to 1 April 1995.

Northern Hemisphere 1000mb Northern Hemisphere 500 mb

Day Ctrl. Test.1 Test.2 Test.3 Test.4 Ctrl. Test.1 Test.2 Test.3 Test.4

1 0.972 0.971 0.974 0.973 0.973 0.989 0.989 0.990 0.990 0.990

2 0.937 0.934 0.942 0.938 0.938 0.965 0.963 0.966 0.966 0.966

3 -0.884 0.878 0.888 0.886 0.883 0.924 0.920 0.926 0.926 0.925
.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4 0.788 0.787 0.797 0.796 0.793 0.852 0.849 0.859 0.858 0.859

5 0.685 0.688 0.689 0.691 0.69 0.760 0.763 0.770 0.767 0.774

Southern Hemisphere 1000mb Southern Hemisphere 500 mb

DayCtr I T Test.3 
Day Ctrl. Test.l. est.3 Test.4Ctrl. Test.1 Test.2 Test.3 Test.4

1 0.948 0.946 0.952 0.948 0.950 0.971 0.974 0.974 0.975 0.975

2 0.885 0.882 0.894 0.883 0.886 0.919 0.926 0.927 0.928 0.928

3 0.793 0.796 0.806 0.798 0.796 0.833 0.849 0.852 0.850 0.851

4 0.680 0.685 0.699 0.690 0.690 0.721 0.739 0.743 0.744 0.747

5 0.551 0.579 0.574 0.564 0.566 0.599 0.618 0.621 0.616 0.615


